Graph Ear Decompositions and Graph Embeddings
نویسندگان
چکیده
Ear decomposition of a graph has been extensively studied in relation to graph connectivity. In this paper, a connection of ear decomposition to graph embeddings is exhibited. It is shown that constructing a maximum-paired ear decomposition of a graph and constructing a maximum-genus embedding of the graph are polynomial-time equivalent. Applications of this connection are discussed.
منابع مشابه
Labeling Subgraph Embeddings and Cordiality of Graphs
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
متن کاملOn the Volume of µ-way G-trade
A $ mu $-way $ G $-trade ($ mu geq 2) $ consists of $ mu $ disjoint decompositions of some simple (underlying) graph $ H $ into copies of a graph $ G. $ The number of copies of the graph $ G $ in each of the decompositions is the volume of the $ G $-trade and denoted by $ s. $ In this paper, we determine all values $ s $ for which there exists a $ mu $-way $ K_{1,m} $-trade of vo...
متن کاملTreewidth, Pathwidth and Cospan Decompositions
We will revisit the categorical notion of cospan decompositions of graphs and compare it to the well-known notions of path decomposition and tree decomposition from graph theory. More specifically, we will define several types of cospan decompositions with appropriate width measures and show that these width measures coincide with pathwidth and treewidth. Such graph decompositions of small widt...
متن کاملHamilton decompositions of line graphs of perfectly 1-factorisable graphs of even degree
The proof of the following theorem is the main result of this paper: If G is a 2k-regular graph that has a perfect 1-factorisation, then the line graph, L(G), of G is Hamilton decomposable. Consideration is given to Hamilton decompositions of L(K 2k ? F).
متن کاملEar-decompositions of matching covered graphs
We call a graph matching-covered if every line belongs to a perfect matching. We study the technique of "ear-decompositions" of such graphs. We prove that a non-bipartite matchingcovered graph contains K~ or K2@Ka (the triangular prism). Using this result, we give new characterizations of those graphs whose matching and covering numbers are equal. We apply these results to the theory of r-criti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 12 شماره
صفحات -
تاریخ انتشار 1999